박차를 가하고 있는 머신러닝 3일차. 점점 수학 비중이 늘어난다 괴롭다 일단 수업들으면서 이해한 만큼만 주절주절 적어 본다. 기본 알고리즘(2). KNN(K-Nearest Neighbor) KNN( K-Nearest Neighbor, K 최근접 이웃)은 train 데이터를 산점도로 쫙 나타낸 다음에,(따라서 fit() 과정은 그냥 산점도를 그리는 과정이다. = 연산이 단순하다.) 주어진 test 데이터를 이 산점도에 찍은 후그 근처에 있는 점들(이웃, Nearest Neigbor) K개로부터 답을 구하는 모델이다. Linear Regression과 달리 회귀와 분류 양쪽에 다 쓸 수 있다. 회귀는 이웃들의 평균, 분류는 이웃들의 최빈값을 답으로 뱉으면 되니까. 그런 이유로 KNN에서는 이웃의..